Brian D'Urso


218 Allen
(412) 624-2756
My Website >
Assistant Professor


Brian R. D'Urso received his Ph.D. in Physics in 2003 from Harvard University, where his work contributed to a new measurement of the electron g-factor, which currently provides the most accurate measurement of the fine structure constant. He went to Oak Ridge National Laboratory as a Wigner Fellow in 2003, and remained as a member of the ORNL Research Staff and then Senior Research Staff until 2008, where he lead a team developing nanostructured materials and novel fabrication techniques. In 2009, he became an Assistant Professor in the Department of Physics and Astronomy at the University of Pittsburgh while remaining a joint faculty member at ORNL.

The research in the D'Urso group spans several major research areas:

  1. Quantum nanomechanics: Our research on quantum nanomechanics has focused on the development of nanometer-scale mechanical systems where quantum mechanics can have significant effects. Recently, we have been focused on the mechanical motion of a diamond nanocrystal in an optical trap, where nitrogen vacancy (NV) centers in the nanodiamond can be used to measure and control the quantum motion of the trapped nanocrystal.

  2. Graphene and other two-dimensional materials and their applications: As part our nanomechanics research, we started growing our own graphene by chemical vapor deposition (CVD). The growth of graphene has expanded into a project of its own, and we now provide graphene to several collaborating groups around the world.

  3. Superhydrophobic nanostructured materials and measurements in fluid dynamics: My research in superhydrophobic materials began while I was at Oak Ridge National Laboratory (ORNL) and has continued at Pitt in continued collaboration with researchers at ORNL. This effort also expanded to include the development of photon correlation spectroscopy for precise absolute measurements of the shear rate in fluid flow with Walter Goldburg at Pitt.

  4. Open scientific instruments and physics education research: Motivated by success in instructional physics labs, my group has been making custom scientific instruments using Arduino microcontroller boards and Python. We use these instruments both in our research and and in instructional laboratories for undergraduates.

Selected Publications

  1. Formation of hexagonal Boron Nitride on Graphene-covered Copper Surfaces, D. P. Gopalan, P. C. Mende, S. C. de la Barrera, S. Dhingra, J. Li, K. Zhang, N. A. Simonson, J. A. Robinson, N. Lu, Q. Wang, M. J. Kim, B. D'Urso, R. M. Feenstra, arXiv:1509.04531 [cond-mat.mtrl-sci].
  2. Nitrogen Vacancy Centers in Diamond as $\theta^2$ Sensors, S. Dhingra and B. D'Urso, arXiv:1503.00151 [quant-ph].
  3. Loading an Optical Trap with Diamond Nanocrystals Containing Nitrogen-Vacancy Centers from a Surface, J.-F. Hsu, P. Ji, M. V. G. Dutt, and B. D'Urso, arXiv:1506.08215 [cond-mat.mes-hall].
  4. Absolute Measurement Of Laminar Shear Rate Using Photon Correlation Spectroscopy, Appl. Opt. 54, 8821-8826 (2015). 
  5. Electric Field Effects in Graphene/LaAlO$_3$/SrTiO$_3$ Heterostructures and Nanostructures, M. Huang, G. Jnawali, J.-F. Hsu, S. Dhingra, H. Lee, S. Ryu, F. Bi, F. Gharari, J. Ravichandran, L. Chen, P. Kim, C.-B. Eom, B. D'Urso, P. Irvin, and J. Levy, APL Materials, 3, 062502 (2015).
  6. 456-mW graphene Q-switched Yb:yttria waveguide laser by evanescent-field interaction, A. Choudhary, S. J. Beecher, S. Dhingra, B. D'Urso, T. L. Parsonage, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, R. W. Eason, D. P. Shepherd, Opt. Lett. 40, 1912 (2015).
  7. Graphene Q-switched Mode-locked and Q-Switched Ion-exchanged Waveguide Lasers, A. Choudhary, S. Dhingra, B. D'Urso, P. Kannan, D. Shepherd, Photonics Technology Letters, IEEE 27, 646 (2015).
  8. Study on the surface energy of graphene by contact angle measurements, A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. D'Urso, H. Liu, and L. Li, Langmuir 30, 8598 (2014).
  9. Q-switched Operation of a Pulsed-Laser-Deposited Yb:Y2O3 Waveguide Using Graphene as a Saturable Absorber, A. Choudhary, S. Dhingra, B. D'Urso, T. Parsonage, K. Sloyan, R. Eason, and D. Shepherd, Optics Letters 39, 4325 (2014).
  10. Chemical Vapor Deposition of Graphene on Large-Domain Ultra-Flat Copper, S. Dhingra, J.-F. Hsu, I. Vlassiouk, B. D'Urso, Carbon 69, 188 (2014).
  11. Wetting States on Structured Immiscible Liquid Coated Surfaces, E. Jenner and B. D'Urso, Applied Physics Letters 103, 251606 (2013).
  12. Durability of Hydrophobic Coatings for Superhydrophobic Aluminum Oxide, E. Jenner, C. Barbier, and B. D'Urso, Applied Surface Science 282, 73 (2013).
  13. Drag Reduction with Superhydrophobic Riblets, C. Barbier, E. Jenner, and B. D'Urso, Proceedings of the ASME 2012 International Mechanical Engineering Congress \& Exposition (2012).
  14. Quantum Measurements between a Single Spin and a Torsional Nanomechanical Resonator, B. D'Urso, M. V. Gurudev Dutt, S. Dhingra, N. M. Nusran, New Journal of Physics 13 045002 (2011).
  15. Ultra-Precision Machining of Stainless Steel and Nickel with Single Crystal 4H and 6H Boule SiC, W. J. Choyke, B. D'Urso, F. Yan and R. P. Devaty, Materials Science Forum 645-648, 853-856 (2010).
  16. Nanocone Array Glass, B. D'Urso, J. T. Simpson, and M.  Kalyanaraman, J. Micromech. Microeng. 17, 717 (2007).
  17. Emergence of Superhydrophobic Behavior on Vertically Aligned Nanocone Arrays, B. D'Urso, J. T. Simpson, and M.  Kalyanaraman, Appl. Phys. Lett. 90, 044102 (2007).
  18. New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron, B. Odom, D. Hanneke, B. D'Urso, and G. Gabrielse, Phys.  Rev. Lett. 97, 030801 (2006).
  19. Single-Particle Self-Excited Oscillator, B. D'Urso, R. van Handel, B. Odom, D. Hanneke, and G. Gabrielse, Phys. Rev. Lett. 94, 113002 (2005).
  20. Feedback Cooling of a One-electron Oscillator, B.  D'Urso, B. Odom, and G. Gabrielse, Phys. Rev. Lett. 90, 043001 (2003).
  21. One-Electron Quantum Cyclotron (and Implications for Cold Antihydrogen), G. Gabrielse, S. Peil, B. Odom and B. D'Urso, Atomic Physics 17 551, 108 (2001).
  22. Measurement of Spontaneous Emission from a Two-dimensional Photonic Band Gap Defined Microcavity at Near-infrared Wavelengths, R. Lee, O. Painter, B. D'Urso, A. Yariv, Appl. Phys. Lett. 74, 1522 (1999).
  23. InGaAsP Photonic Band Gap Crystal Membrane Microresonators}, A. Scherer, O. Painter, B. D'Urso, R. Lee, A. Yariv, J. Vac. Sci.  Technol. B 16, 3906 (1998).
  24. Modal Reflectivity in Finite-depth Two-dimensional Photonic Crystal Microcavities, B. D'Urso, O. Painter, J. O'Brien, T. Tombrello, A. Yariv, A. Scherer, J. Opt. Soc. Am. B 15, 1155 (1998).

Graduate Advisor

Jen-Feng Hsu