Joint Pitt-CMU Physics and Astronomy Colloquium: Brian D'Urso (PITT)
October 5, 2015 - 8:30pm to 10:00pm
Title: Quantum Nanomechanics: from Graphene to Flying Frogs
Abstract:
We set out to study a system which couples a nanomechanical harmonic oscillator to a single spin. While individual spins are intrinsically quantum objects, mechanical resonators are usually observed as classical systems. Not coincidentally, spins are usually largely isolated from their environment, while nanomechanical devices excel at coupling to almost everything. In our system, a spin and a nanomechanical resonator interact such that they perform quantum non-demolition (QND) measurements on each other, enabling a bridge between the quantum and classical worlds. The strength of the coupling is enhanced by utilizing an avoided level crossing of the coupled spin-resonator system. The sensitivity is maximized by minimizing the mass of the oscillator, leading us to explore graphene resonator and trap-based implementations. Diamond nitrogen vacancy centers are chosen as the source of a spin due to their exceptional spin state coherence times, large zero-field splitting, and optical addressability. Progress towards an experimental realization of this system has further lead us to improve graphene growth techniques, develop novel fabrication methods, and create magnetic traps for diamond nanocrystals.
Location and Address
102 Thaw Hall